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By Ralph I?. BieLat and  Maurice S. Cahn 

An investigation of the characteriatics of a low-aspect-ratio WFng 
was conducted at high  subsanic Mach numbers In the Langley 8-foot hi@- 
speed tunnel. The wing model had an mACA 65--108 airfoil s e c t i a ,  %n 
aspect ra t io  of 4.01, a taper  ratio of 0.498, and no tw is t  or dihedral. 
The results of t h e  Fnvestigatioa fndicated that the severe changes Fn 
aerodynamic ch~rracteristics ueually associated with wings of average o r  
hi@  aspect ratio- were alleviated to a great exbent by employkg a wlng 
of aspect ratio 4.01. m e  abrupt  decrease ~n Mt-curve slope and 
change Fn angle of zero lift trkLen compared dth a WLng of aspect 
ratio 9.0 and the win@;s of NACA TX l6-65 were less pronounced and were 
delayed to higher Mach nmbers. AB the Mach number Fncreased f r c a n  0 .b 
t o  0 . 9  *e aerodynamic-center locatian f o r  the wing of aspect ra t io  4.01 
mmed r e m  7 percent 88 cnmpared with a rearward movament of 12 per- 
cent for the xlng of aspect ratio 9 .O. The Mach nrmiber at which the 
drag begins t o  increase  rapidly was delayed to a value a c h  was approxi- 
mately 0 .O7 higher than that for the wing of aspect ratio 9.0. 

Numerous inveetigatians have indicated mat flight wtth clrplanee 
of conventional design fn the hi@ subaonic or traneonic region would 
prove t o  be extrerueQ diff icul t  because of the changee In aerodynamic 
characteristics of the airplane aeeooiated with t h e  f l o w  changes over 
the wing in the supercritical speed range. These changes, reported 
both from fl i&t  and  wlnd-tunnel data, have  been observed as large drag 
increaees,  severe  increases Fn longituarzlal stability, l O s 6 S S  in control 
effectisremss, and buffeting of the horizontal tail. 
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Investigations made Fn this country and In Germany have shown that  
the speeds at which the adverse effects occurred could be delayed t o  
high  subsonic values by w e  of ags having large amnmts of sweepback 
or sweepf orward.. A recent  hveetigatian  (reference 1) haEI ahown tha t  
winge of small aspect ratio could also be used t o  delay the speeds a t  
Tdlich the adverse effect8 occurred. The results of this inveeti-tim 
indicated that bnprovernente in the aerodpamic  chmaoteristics of low- 
aspect-ratto wings Fn the supercritical speed range were a result of 
the three-dbmmional relieving effects at the t ips .  These data, how- 
ever, were obtained for whga easploying NACA 0012 airfoil e e c t b n ~  with 
rectangulm plan form and having square KLng tip. It could be expected 
that the me of thinner wings emlloylng high-critid-speed  sections and 
with rounded t i p s  would lead t o  Further improvemsnts in delaying the 
speed at which t h e  adverse effecte occurred. T U  plupoee of this report, 
therefore, is to present  data for a wing of lov aiflpect ratio which 
ut i l lzes  a high-critical-epeed  seotian and rounded Xing t i p s  and t o  
maks cnmpecrieonf~ wtth win@ of high aspect  ratio. 

The results reported hereFn include data at high subeonic Mach 
' numbers for  a XLng of aapect ra t io  4.01 ham an IiACA 65-108 airfoil 

section, a taper  ratio of 0.498, and no twiet or d ihedra l .  ~ h e s e  date 
were originally obtdned Ctn conjunction with a general research program 
undertaken by the NACA t o  provide Fnfomatian at high subsonic Mach 
numbers o%the caponant par te  of an airplane. The data afl &ported Fn 
reference 2 =re obtained specifically fo r  a horizatal-tail model. 
The data as presented hereFn include the data of reference 2 for the 
model with zero cantrol  deflectim plus waks-eurvey msaeurearsnts which 
were not-previously reported. 

The symbols and aerodynamic coefficfenta wed in this report are 
defined as follows: 

A aspect ra t io  

a epeed of sound in  undisturbed etream 

b span of model 

C section chord of wing 

C man aerodynamic chord of wlng 
- 

M Mach numiber (V/a) 
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c 
, 

s ta t ic  peesure 3n undisturbed stream 

loca l   s ta t ic  pressure at polnt on m o i l  seoticm 

presme coefficient correepcmd3ng t o  a t t ” b  of local 

m c  pressure in .undisturbed  stream ($+) . 

speed of somd at scme point cm a l r f o f l  section 

axe8 of wing 

velocity In undisturbed  stream 

distance along ohord from le-g edge of a i r f o i l  eect im 

distance along samiepan fram center Use 

-angle of attack 

mass density i n  undisturbed f3t;reaDl 

coefficient of v-iscoeity in undisturbed stream 

pitching-mament coef‘floient about 25-percent- 

wing normal-f orce ooeff icient .-) 
WFng p i t c h i n g - k n t  coeff fciant abonb 25-percent-chord sta- 
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an slope of wing section normal-force curve per- degree 

AH loss of t o t a l  pressure in wab 

wing ssction  profile-drag  coefficient from wake-survey 
measurements 

wlng prof ile-drag coeff ioient 

Subecripte : 

f b  force break 

L lower &ace of atrfoil  section 

U upper surface of airfoil  section 

The  Langley 8-foot hi&-apeed tunnel, Fn which the  teete were con- 
ducted, is of t h e  single-ret-,  closed-throa't  type. 

Model. - The wing mdel tested had a modified NACA 65-m8 a i r f o i l  
section, an aspect ra t io  of 4.01, a taper rat io  of 0.498, and n3 twist 
or dihedral. The 7O-percegt  -chord l ine wa8 used ~ E I  the reference  sta- 
t ion In the design of the x h g  and the quarter-chord Une, as a result, 
was Swept back approxhntely 8.64O. The wing was orfgjnally deei@yzed 
for m e  as a horizontal-tail mdel (reference 2) and therefore w a ~  
equipped with elevators and t r i m  tabs. The W A  65-U8 airfoil  section 
from t h s  70-percent-chord station t o  the t ra i l ing edge was mdified t o  
make the  sides of the  elevator8 and t r i m  tabs  atrai@;ht. The ordinates 
for  the NACA 65-108 airfoil section,  as mdified, are given Fn table I, 
tLnd general  dimensions of the w i n g  are shown i n  figure 1. Dimen8ions 
for the tip shape of the win& model are given i n  table 11. 

Twenty static-pressure  orifices were placed a t  each of fm span- 
wiae stations in Unes perpendicular t o  t he  7O-percent-chord etatian. 
The  spanwise atatlone  at which pressure meaBur"bs were t a h  were 
located on the  left  half of the w h g  at 15, 40, 70, and 90 percent 
semispan. A detailed description of the wing will be found In refer- 
ence 2. * . 

Support - The wing was supported in the .tunnel. by mean8 'of a 
vertfca'l steel plate which had a mowied-eUpse  section o f  w-inch ch&d - 
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and 0 075-inch maximum thiclmess . The surfaces of this pla te  fomned 
re f lec t im planes for the two ~amfspana. Additional Fnformation 
about the support plate is t o  be found Fn reference 3.  

Procedure .- Lift and moment data were obtdned from pressure- 
dietribxtian IIlt3a8mmmts made- a t  each of tihe fou r  spanwise stations. 
The measure.mente mre made for angles of attack fKlm -2O to 6O at Mach 
numbers varying from 0.40 to 0 -925. Drag data were d e t e m h e d  by the 
wake-survey method with a rake  located a p p r o m t e u  1.56-root-chord 
lengt;hs behind the. wing 70 -percent-chord statim The wa3m surveys 
were made a t  the 15-, 40-, TO-, and ~-percent-semiepan s t a t i m  by 
means of the rake  described fn reference 3. The gaps between the 
stabilizer and elevator were sealed suah that the mdel waa aerodynml- 
cally -0th for the mke-survey measuraments. The drag measmements 
were taken at Oo, 3O, and 60 angle of attack for Mach nurribers of 0.645 
to 0 -885 The drag data were llmited to a Mach number of 0 -885 
since the tunnel choked at the xake-eumey rake  support s t rut .  As 
explained in reference 3, chokhg at the survey strut imposes a IFmita- 
t im on the m a x h m  test Mach nmber and does not affect  the  applica- 
b i l i t y  of t h e  results. 

Reynold6 number .- The variation of test Regno- nuniber, based an 
the mean aeroQnmic chord of the WFng, with- Mach  number is presented 
tn figure 2. 

Corrections. - Tunnel-wall-interference correc t im,  mFng the 
methods of references 4, 5, 6, and 7, have been applied t o  t h e  data up 
t o  and including a Mach number of 0.9. The -tude of t h e  correc- 
tions wa8 found t o  be very m l l j  t he  corrections t~ the Mach 
numbers even at a Mach  number of 0 -90 were approPimately 1 percent. The 
correctiom to the coefficients due t o  comectiane in dynamic pressure 
were also small, the  correction being about 2 percent. Aa 
brought out Fn reference 2, the tunnel choked in  the present tests a t  a 
Mach number of approxhmtely 0.95. N ~ m ~  tests have shown that, &en 
choldng occurs, the data are no longer comparable t o  free-air  character- 
i s t ics .  There waa also a tendency towards choking at a Mach number 
of 0 -925. The results obtained at this Mach nuniber, even if completely 
corrected for the USuEtl effects of wind-tunnel-wall interference, may 
not, therafore, indicate  free-air  characteristics. The data which have 
been included herein f o r  a Mach nmnber of 0.925 me therefore  considered 
to be of uncertain  value. 

Ln the reduction of the data, the  section pressure distributions 
measured a t  t he  four spanwise stations were plotted and then 
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mechanically integrated  to  obtain  section no--force coeff iciant Cn 
and section pitching-mamsnt coeffioient The ectian  coefficients 
w8re then wed t o  make plotB of c,c- b and %c2 2 agahet  the e&- 

span etat iam which were mechanically integrated t o  give the wing 
normal-force coefficient % and wlng pitclxlng-mamsnt coeffi- 
cient C%-/4, respectively.  Typical p lo ts  of the pressure distribution8 
for two epanwise statione which  were ueed t o  obtain the wing flection 
coeff icients are shown In figure 3 .  

S S2 

The total-pressure and static-preesure meammments made during the 
wake eurveys have been reduoed to section profile-.drag coef'ficiente 
wing the r ae th~de  given in reference 8 .  The m g  profile-drag  coeffir 
oient w m  then obtaired from mechanical integration of curves of c b c  
again& the samispan. 

The variations of wlng normeh-force, wing pitching-moment, and wlng 
profile-drag coefficients with Mach number for eeveral angles of a t t m k  
m e  presented fn  figure 4 while figure 5 ahow the variations of 
of attack, wlng pitching-mameat, and w h g  profile-drag coefficients 
plotted  against wiq normal-force coefficient. The variations of 
section normal-force coefficient with Mach  ntmiber at two spanwise sta-  
tions fo r  angles of attack of 2 O  and 6O are show in figure 6 .  The 
effect  of Mach nlmiber on the aectim normal-foroe-curve slopes at two 
spanwise stations is presented in figure 7. The slopes of the curves 
were measured between Oo and 3 O  angle of attack. Figure 8 ehow the 
change in  aerodynamic-center location with Mach number. The aerodynaanic- 
center  location WBB dete-ed for a w3ng normal-force coefficient 
of 0.2. Figure 9 present6 the m i a t i o n  of eectioa  grofile-drag  coeffi- 
cient with Maoh number at  two spanvise statim for  eectian normal-force 
coefficients of 0 and 0 -5 The variation of drag coefficient with Mach 
number f o r  a m g  1o-g of 60 pounda per square foot at an altitude 
of 35,000 feet,  including the calculated induced drag, is ahown In 
figure 10. Figure 11 shows the variation of force-break Mach number 
wlth aspect r a t i o  a8 cmputed by the metho& of reference 9 .  The 
force-break Mach  number is estimated rou&ly  a8 the Mach number for 
which the drag coefficient first begine t o  rise  rapidly. 

Spanwfae vecriationa of section loadinge, section nmmants, and 
section drags from which the wing characteristics were dete-ed are 
shown In figures 12, l.3, a n d .  14, respectively. These figures can  be 
uti l ized In determining the bending and twiwtlng moBllsnts that occur on 
the wing. 

Figure 15 peeants t h e  losses of total pressure in the wake behind 
the wing for four spanwise etatiom f o r  Mach numbere of 0 -645, 0.822, 
and 0.883. 
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Normal-Force Characterietfcs 

. 

h general, there were no ee r iou  change8 In the wing normal-force 
characteristics below a Mach ntrmber af 0.86 f o r  the --of -attack 
range Fnvestigated (fig. 4) . It can be 66811 in figure 5 that the angle 
for zero E t  remained fpairly c0netm.t up t o  a Mach number of approxi- 
mately 0.86 and then ehifted  positively at supercritical Mach nunib3re. 
The shif t  in angle f o r  zero Uft ~ the range of Mach numbers frm 0.86 
t o  0 0905, however, ambunted t o  approximately 0 .6O. Similar effects were 
noted f o r  the low-aspect-ratio wings reported in reference 1. On the 
other hand, the data of reference 1 far the hi&-aspect-ratio wLngs and 
the data of reference 3 f o r  a #ing of aspect ra t io  9.0 indicated large 
and erratic chsnges in the nomml-force characteristics  at  supercritical 
Mach numbers. 

The section normal-force characterist lcs  at  two spanwise stations 
f o r  the wing me &own in figure 6 ,  together w i t h  the aection  character- 
i s t i c s  f o r  the wlng of reference 3 *ich employe an KACA 65-210 a i r f o i l  
section and ~ i c h  has an aspect  ratio of 9.0 . The data f o r  the wing of 
aspect ratio 9 .O have been plotted for w e 8  of attack which wotlld very 
nearly give  values of the section normal-force coefficient In the sub- 
c r i t i ca l  region comgarable t o  those of the present wing. It can be seen 
that  the ueual fncreaee In section lift tn the supercritical range, as 
well 88 the abrupt &crease in t he  supercritical range, w88 much lower 
for the low-aspect-ratio wtag as ccrmpared with the high-aspectratio 
whg, particularly  at  the inbomd station and high angle-of -attack con- 
dition. Similar effects are t o  be noted f o r  the section normal-force- 
curve slopes shorn In f igme 7 .  The increase In the n d - f o r c e - c u r v e  
alope.with Mach number, 88 well aa the abrupt decrease of elope a t  
supercritical Mach numbers, for the low-aspect-ratio wing was lese than 
that  f o r  the wing af aspect  ratio 9.0. The Maoh nlrmber a t  which the 
slope %re& I' (decreases) far the wing of the  present  investigation -8 
approximately 0 -875 8s cmared with a Mach rimer of 0.76 f o r  the 
aspect ra t io  9.0 *go This repreeents an increme of 15 percent in the 
"force-breBk" Mach number. Since the WFng of aspect r a t i o  9.0 has an 
a i r f o i l  aectian Wch has more  camber and thicknees than the win@; in the 
present  investigation,  the 3nprovament in the aerodynamic characteristics 
f o r  the x h g  of aspect ra t io  4.01 is not due entirely t o  the reduction 
in aspect  ratio. Approxttmte calculatioae -cake that the cumbined 
effects of decrease in camher and thicknese f o r  the ITACA 6 5 4 8  a i r f o i l  
result in an apprortmRtely 7-pefcaht  'Increase in the   cr i t ical  speed of 
that  of the NACA 65-2la a i r fo i l  and therefore the ramawing 8 percent is 
due presumably t o  the reduced aspect ratio.  
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The theoretical work done in  reference 9, which considers t h e  f l o w  
about a series of thin ellipsoids, further substantiates  the inprove- 
ments  which can be gained in the  cri t ical  speed by w e  of ellipsoids of 
low aspect ra t io .  The theory, however, indicate13 only qualitative 
agreement s inoe the theory  underestimates the experimsntal results 
quantitatively. It is seen in figure 6 that, when the sectian charac- 
t e r i s t i c ~   a t  the 40-percent-earnispan'  and gO-prcent-13emLsp stations 
are comgared, the three-dimslll3ional re l ievhg  effects  of the t ip   a re  
greater  for the low-aspect-ratio WFng t h a n  for the wing of aspect 
ra t io  9.0. A further example of t h e  relieving  effects of the t i p  an the 
spanwise sectian  characteristics f o r  the two wins can be seen in 
figure l2- The data are cmpared for  angles of attack which give appror- 
Fmately the same section normal-force coefficient at 8Ub~ritiCal Mach 
numbers. Careful observation  indicates that  there was very l i t t l e  span- 
wiee movament of the lateral c a t e r  of load f o r  the wing of aspect 
ra t io  4.01 through the Mach number range On the other hand, it can be 
seen that there were large outboard ahlfts In the l a te ra l  center of load 
on the wing of aspect ra t io  9.0 at  supercrit ical  Mach nutibere. It w88 
shorn in reference 3 tbat   them  shifte were due primarily t o  the fac t  
that  the lift losses a t  the t i p  -re lee8  severe  than thoee a t  any of the 
Inboard sections because of the effect of t i p  reIlef. It w a ~ l  ahto shown 
quantitatively in reference 9 that  the three-dimensional relief Fncreased 
wlth a decrease in the aspect  ratio,  especially a t  high Mach nr;nnber8. Aa 
a result of the  tip-relieving  effects,  therefore, it could be expected 
that  the wing of aspect ra t io  4.01 would .undergo less 13evere  spanwiee 
variations i n  section  characteristics. 

It w a ~  stated In reference 1. that M e r  Improvements Fn the aero- 
dynamic charracteristics of low--peat-ratio winge could be eqected by 
employing wings of thin sectiona and late-critical-speed t y p e  and 
which had suitably shaped t ipa.  A oarprison of the U 9 t - c m e  elope 
fo r  a wing of aspect ra t io  4, obtained by interpolation of the data fram 
reference 1, with the LLft-cur-ve sbpe for the present Xing of a,spect 
ra t io  4 -01 lndfoates  that  the Mach nmber  for the Ut-curve  'break" is 
increased by 0.08 for  the present uing. Thfs represents an approxi- 
mate 10 -percent w r e a s e  in the 'yorce-break" M&uh nmiber f o r  the 
present whg over that of the uing of reference I which has an 
NACA 0012 airfoil section and W c h  haa a rect- plan form and 
ElQUare Whg t ipa 0 

Pitching-Mameslt Characteristics 

A t  angles of attack  near Oo, the variation of pitching-mmnt 
coefficient with Mach number indicated gradual negative Fncreaees in 
the  eubcritioal speed range, whereas the pitohing-"t  ooefficients 
f o r  4' and 6' angle of attack &owed gradual positive increaees (fig.  4) . 
AB the Mach rimer uae increased t o  supercritical values, the pitching 
mamsnte indicated rather large diving tendencies. The variation of the 
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moments w i t h  angle of attack wae reversed such that the slopes became 
stable. Figure 5 share the pitching-moszant coef'ficients  plotted 
agahs t  normal-force coefficient f o r  EeV8rd"ach nlmibers. T h i s  figure 
clearly  indicates the change in pitching-mmnt Blope frcm posit ive  to 
negative values 88 the Mach n&er was Fncreased above 0.85. These 
changes in pitchlng mcansn.t, have  been shorn in several  investigations 
and from schlieren photographs t o  be associated with maarmt of the 
shock on the upper and low~r surfaces of the wing. 

The effect of Mach  number on the aerodynamic-center location, 
expressed in percent of the mean aerodynamic chord, is given in figure 8 
It can be seen that  the aerodpamic center is located forward of the 
quarter-chord  point for Mach numbers b e l o w  0 -85. Above a Mach  number 
of 0.85 the aerodynamic center moved rearward of the quarter chord such 
that at a Mach nmfber of 0.9 the aerodynamic center is located at  the 
29-percent  -chord poFnt. T h i s  represents a n  over-all rearward shift 
of 7 percent in the aerodynamic center as the Mach nurmber increased 
frm 0 .b t o  0 -90. The aerodynamic-center characteristics  for the WLng 
of aspect ra t io  9.0 of reference 3 are a ~ o  bcluded in figure 8 for 
comparison. The aerodymmic-center  location f o r  this UFng gradua l ly  
moved rearward from the qu&rter-chord station q t o  a Mach nWer  
of 0.825 and then ehifted t a  approximately the 37-percent-chord  LocatIan 
as the Mach number increased t o  0 .go. The changes in the aeroQmmic- 
center  location at   supercrit ical  Mach numbere w e  associated  with the 
changes Ln the chordwise loadlnge. (See, far instance,  fig. 3 ) The 
changes in the aerodynamic-center locatian coupled vith t h e  changes Fn 
lift-curve slope and angle for zero l i f t  are the prhc ipa l  causes of the 
adverse s tabi l i ty  changes that occur Fn the mpercrit ical  fUght range. 
Became these changes  have  been observed to be 1068 severe for the wing 
of aspect ratio 4.01, it could be expected that f l i&t  in the  transonic 
speed  range  could be made poesible with an aircraft amploglng a low- 
aspect - ra t io  uing. 

The WFng profile-drag coefffcients  exhibited no unueual character- 
i e t ics  below the Mach  number f o r  the abrupt drag rlse. The wing 
profile-drag  coefficient a t  an angle of attack of Oo conrmnced t o  
increase  rapidly when the Mach rider was raised above 0.85 (fig. 4) .  
The high Mach n&er attained  before t h i s  drag r i s e  occurred is due Fn 
part  t o  the l o w  aspect ratio and t o  the anall thickness r a t io  of the 

The section  profile-drag  characteristics  at two spanwise stations 
f o r  section normal-force  coeff icients of 0 md 0 -5 f o r  the present ulng 
are compared in figure 9 with t h ~ ~ e  of the wing of aspect  ratio 9.0. 
The effects of the reduced aspect  -ratio,  including  the combined effects 
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of the reduced camber and thickness an the fwcticm profile drag for  the 
presant wing, are fmmSd5atel.y apparent. It can be 888x1 that the section 
p ro f i l e -d rag  coefficients  at the inboard statim8 as canpred with sta- 
t ions near t h e  t i p  were hi&er and cammenced t o  Increme at lower Mach 
nmbere for both win@. The rapid iricreme in drag at the inboard eta- 
tione is cawed by separation of the flow over the WLng due to ehoclfs 
which are essentially normal to the flow (fig.  15) Of p&icular 
Interest is the reduotion In the drag for  both win@ a t  the 93-percent- 
~lemispan station at zero section normsl-force coefficient and a t  the 
9-percent -s&span station for the wing of twpect ra t io  9 -0 a t  0.5 sec- 
t ion normal-force coefficient. This reduction of drag is t h e  reeult of 
the  tihree-dimensional tyge of f l o w  a t  the t ipe . The drag data a t  the 
90-percent-semispan station for the w 3 . q  of mpect ratio 4.01. a t  0.5 sec- 
t ion normal-force coefficient is not  presented shoe the f l o w  a t  this 
etatian was associated with t l p  vortices, thw mldng the meaeurements 
of the drag  doubtful. The w a h  -survey data of figure 15 ehomd that the  
loeeee in  the  wake at the $Xl-percent -sermispan s ta t ion   a t  an angle of 
attack of 6O were characterized by two' pea : one peak located a t  
approximately 1 inch below the chord Une representlng the direct losses 
in  the wake behind %he wing and the other  peak representfng losees in 
the f l o w  influenced by the t ip  vortices.  

A comparison of tihe drags f o r  the wlngs of aspect; ra t io  4 -01 and 9 -0 
calculated for a level-flight wing loading of 60 pounds per E Q U ~ ~  foot 
a t  an a l t i t u b  of 35,000 feet (calculated Uduced drag included) is 
shown Fn figure 10. The reEnrlt8 indicate that t h e  Maoh number a t  which 
an atrplane using the wing of a q e c t  ratio 4.01 described hereFn could 
fly, before Urge increases of power are required, is Fncreamd by 
approxbmtely 0.07 above that of the wLng of aspect r a t i o  9.0. As t o  be 
expected, figure 10 also shows t h a t  in the low- number range, the 
drag of the low-mpect-ratio wing is larger than mat of the high-aspect- 
ra t io  wing became of the  hi@er induoed drag. AB the Mach number is 
increased above 0.79 where Large increaaes in power wuld  be first mi- 
feated, however, it c m  be seen that the drag of the low-aspect-ratio 
KLng is coneiderably RmAer. As a n .  exmaple, the Lift-drag ra t io  for the 
low-mpect-ratio wing is approximately 11.0 at 8 Mach number of 0.885, 
whereas the UTt-drag ra t io  far the wing of aspect ra t io  9.0 is approxi -  
mately 4 - 9 .  S W l a r  results =re observed f o r  the wings of reference 1. 

A cnmparison of the variation of force-break Mach nuniber xith aspect 
ra t io  f o r  the wing of aspect ra t io  4.01reported herein and the KLnge of 
referencea 1 and 3 are  presented in figure U. It can be seen that  
reducfng the aspect ra t io  Fncreases the force-break Mach number, 
especially for the NACA O O l 2  a i r foi ls .  The method of referance 9 has 
been employed t o  estimate the effect of reducing the aspect  ratio on the 
f orce-break Mach nmber. The theoretical curve for the NACA 63-108 a i r -  
foil vas obtained by correcting the force-break Mach number of the 
NACA 65-210 airfoil of aspect ra t io  9.0 for  the effecte of thickness and 

. 
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camber as  described  previously. It can b4 seen that  very good agreement 
exists between the theoretical and experimsntal results f o r  the 
NACA 654.08 Wfng a t  aepect ratio 4.01. Furthemme, it can be 80- that 
the  increase in the drag force-break Mach d e r  resulting from a reduc- 
t ion of the aegect ratio frm 9.0 to 4.01 m o u n t s  t o  cmly 1 percent, 
whereas the lncrease In the lift force-break Mach number  due t o  a 
s h d l m  reductim in aapect r a t io  amounts t o  appmxlmately 8 percent. 
When this earns method is for the mACA 0012 afrfoila, however, the 
correlation between theoretical end experimental data ie  not goad. As 
explained in reference 9, a quantitative cnmparison of the experimental 
results with the theoretical  result8 which considers the flow around a 
series of thsn elltpsoids is not waxranted e k c e  the wing8 of reference I 
dfd not have elliptical  aectians and plan forme. Qualitatively, however, 
the results do indicate the improvement wbich can be obtafned br reducing 
the aspect ratio.  

.The results of an Fnveatigation of a w2ng cmploxing an aspect ra t io  
of 4.01, thiclmess ratio, and high-critical-speed section indicated 
the following: 

1. In the range of Mach nuuibera up t o  0 -86 there were no adveree 
changes In lift-curve slope and In angle of zero lift A t  Mach numbere 
in the range of 0.86 t o  0.9 the changes of the Ifft-curve slope and 
angle of zero lift were l e s B    eve re *en cnmpreb with a wing of aapect 
ra t io  9 .O or  t o  the wings of RACA TIi 1665. The hi@ Mach numbers 
at ta ined before the  lift-curve elope breaks represent an approximate 
increaee of 0 -12 and 0.08 in Mach  number over that of the xing of aspect 
ra t io  9.0 and the ufnge of NACA TN. 1665, respectively. 

3.  The Mach number at which the drag begin8 to increase rapidly me 
&laye& t o  a value whfch wae &pproafmetnly 0 -07 higher than that f m  the 
wing of aapect ra t io  9.0 

Langley Aeronautical Laboratory 
National Advieory Cammittee for Aeranautics 

Langley Air Force m e ,  Ba. 



12 NACA RM L9E23 

1. Stack, John, and LFndsey, W. F. : Characterietlca of Low-Aspect-Ratio 
W i n g s  at Supercritical Mach lrlumbers . NACA Rep 922, 1949. 

2 B l e l a t ,  R a l p h  P.  : Investigation  at H i &  Speeda of 8 Horizontal-Tall 
Model In the Langley 8-Fo3t HighSpeed. Tunnel .  W A  RM L6LLDby 
1947 

30 Whltcmb, Richard T.: Investigation of the Characterletice of' a El&- 
AspeCt&&tio W F n g  in t h e  Langley 8-Foot HighSpead Tunnel.  W A  
RM I&28a, 1946. 

4. Glauert ,  E.: Wind Tunnel Interference on W l n g a ,  Bodies and Airscrew. 
R *  & M a  NO. 1566, Britt& A.R.C., 1933. 

8 0 B m h ,  Donald D., and MourheEs, J. : lJumerical Evaluation of the 
Wab?survey Equations f o r  Subeonic F l o w  Including the Effect 09 
Energy Addition NACA ARR L m ,  1945 

i 

. 

9 H e m  , Robert V., and Gerdner, Cllffard S . : Study by the Prandtl- 
GLauert  Method of Cnmpreseibility Effects and Crit ical  Mach 
Number f o r  Ellipsoid8 of Varriow Aepect Ratios and Thfcknes~ 
Ratios NACA TN 1-79, 1949. 



NACA RM LgH23 

TABLE I 

ORDINATES FOR HACA 65-108 AIRFOIL 

(Statio- and ordlnatea in percent of wlng chmd) 

~~ 

Station 

0 
.474 
.721 

1.217 
2.462 
4 a959 
7 *458 
9  *958 

19 a963 
24 969 
29  -974 
34.981 
39  9987 
44 -994 
50 .ooo 
55 -006 
60 . o u  
65.015 
70 .ooo 
80 .om 
90 .ooo 
100.033 

14 .g&I 

OrdFnata 

0 
6 1  
9790 
099 

1-359 
1 - 9 3  
2 -330 
2.690 
3 -267 
2 071.0 
4-047 
4.291 
4 0453 
4 9534 
4.522 
4.409 

.4.186 
3 om3 
3 0 4 8 6  

3  -043 
.031 

*1.016 
a0 

L. E. radim, 0 -434 

station 

0 
-526 
"779 

1.283 
2 *537 
5 .Oh1 
7 -542 
10.042 
15 .ob 

25.031 
30 a 2 6  
35  -019 
40 -013 
45  .a36 
50 -000 
54.994 
59 989 
64 -985 
70 .ooo 
80 .ooo 
90 -000 
103 .ooo 

20 e037 
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Plan-form contour of t i p  

Elevation contour of t i p  
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Figure 3;- Pressure d i s k i b u t i o n  about the wing at two semit3pan s t a t ions .  
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Figure 3.- Concluded. 
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19 

Figure 4.- Variation of wing no&-force, wing pitching-moment, and w i n g  
prof ile-drag coefficients w i t h  Mach number. 
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. 
FLgure 5.- Variation of angle of attack, w i n g  pitchfng-mament coefficient, 

and wing profile-drag coefficient with xin@; normal"f0rce coefficient. 
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Figure 6.- Variation of eection normal“force coefficient w l t h  Mach number 
at two spaarise stations. 



Figure 7.- Variation of eection nolPlal"f0rcecurve elope w i t h  Mach number. 
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Figure 8.- Variation of aemdpanio-oenter h a t i o n  with Mach number. 
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Figure 

Mach numbev, M - 
9.- Variation of section profile-drag coefficient with Mach rumiber 

at two spanwise stations. 



I 
' '  I . 

. .  



A s p e ~ f  ratio, A 

Figure X!-.- Variatlcm of force-break Mach nrmber with aepect ratio.  
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Figure 12.- Spanwiee variat ion in section loadiws. 
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Figure 13.- Spanwise variation in section moment. 
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Figure 14.- Spanwise variation of section profile-drag coefficient. 
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Fle;ure 15.- Continued. 
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Figure 15.- Concluded. 
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